Evolutionary functional elaboration of the Elovl2/5 gene family in chordates

نویسندگان

  • Óscar Monroig
  • Mónica Lopes-Marques
  • Juan C. Navarro
  • Francisco Hontoria
  • Raquel Ruivo
  • Miguel M. Santos
  • Byrappa Venkatesh
  • Douglas R. Tocher
  • L. Filipe C. Castro
چکیده

The biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA) provides an intriguing example on how multi-enzymatic cascades evolve. Essential LC-PUFA, such as arachidonic, eicosapentaenoic, and docosahexaenoic acids (DHA), can be acquired from the diet but are also endogenously retailored from C18 precursors through consecutive elongations and desaturations catalyzed, respectively, by fatty acyl elongase and desaturase enzymes. The molecular wiring of this enzymatic pathway defines the ability of a species to biosynthesize LC-PUFA. Exactly when and how in animal evolution a functional LC-PUFA pathway emerged is still elusive. Here we examine key components of the LC-PUFA cascade, the Elovl2/Elovl5 elongases, from amphioxus, an invertebrate chordate, the sea lamprey, a representative of agnathans, and the elephant shark, a basal jawed vertebrate. We show that Elovl2 and Elovl5 emerged from genome duplications in vertebrate ancestry. The single Elovl2/5 from amphioxus efficiently elongates C18 and C20 and, to a marked lesser extent, C22 LC-PUFA. Lamprey is incapable of elongating C22 substrates. The elephant shark Elovl2 showed that the ability to efficiently elongate C22 PUFA and thus to synthesize DHA through the Sprecher pathway, emerged in the jawed vertebrate ancestor. Our findings illustrate how non-integrated "metabolic islands" evolve into fully wired pathways upon duplication and neofunctionalization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ELOVL2 controls the level of n-6 28:5 and 30:5 fatty acids in testis, a prerequisite for male fertility and sperm maturation in mice.

ELOVL2 is a member of the mammalian microsomal ELOVL fatty acid enzyme family, involved in the elongation of very long-chain fatty acids including PUFAs required for various cellular functions in mammals. Here, we used ELOVL2-ablated (Elovl2(-/-)) mice to show that the PUFAs with 24-30 carbon atoms of the ω-6 family in testis are indispensable for normal sperm formation and fertility in male mi...

متن کامل

Observations on the Evolution of the Melanocortin Receptor Gene Family: Distinctive Features of the Melanocortin-2 Receptor

The melanocortin receptors (MCRs) are a gene family in the rhodopsin class of G protein-coupled receptors. Based on the analysis of several metazoan genome databases it appears that the MCRs are only found in chordates. The presence of five genes in the family (i.e., mc1r, mc2r, mc3r, mc4r, mc5r) in representatives of the tetrapods indicates that the gene family is the result of two genome dupl...

متن کامل

mice by homologous recombination Abstract ELOVL2 is a member of the mammalian mi- crosomal ELOVL fatty acid enzyme family, involved in the elongation of very long-chain fatty acids including PUFAs

Journal of Lipid Research Volume 52, 2011 245 Copyright © 2011 by the American Society for Biochemistry and Molecular Biology, Inc. Essential fatty acids, i.e., linoleic (C18:2n-6) and -linolenic acid (C18:3n-3), which are prerequisites for normal growth, development, and function in mammals, cannot be synthesized de novo and, as such, have to be derived from diet ( 1 ). Subsequently, the C18:2...

متن کامل

Functional characterization of the chicken fatty acid elongases.

The health benefits of the (n-3) PUFA, EPA, and DHA have created a demand for fish and fish oil, the main sources of these PUFA. Production animals, such as poultry, are potential alternate and sustainable sources of EPA and DHA, provided these fatty acids can be synthesized from plant-derived α-linolenic acid [ALA, 18:3(n-3)]. Because elongases are potential control points in the conversion of...

متن کامل

Quantitative Comparison of Tree Pairs Resulted from Gene and Protein Phylogenetic Trees for Sulfite Reductase Flavoprotein Alpha-Component and 5S rRNA and Taxonomic Trees in Selected Bacterial Species

Introduction: FAD is the cofactor of FAD-FR protein family. Sulfite reductase flavoprotein alpha-component is one of the main enzymes of this family. Based on applications of this enzyme in biotechnology and industry, it was chosen as the subject of evolutionary studies in 19 specific species. Method: Gene and protein sequences of sulfite reductase flavoprotein alpha-component, 5S rRNA sequence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016